
TECHNICAL NOTES AND SHORT PAPERS 

Some Remarks on Modular Arithmetic and 
Parallel Computation 

By H. S. Shapiro 

1. Introduction. A question that has been discussed in recent years is that of 
parallel computation. Can a given computation be broken up into independent 
assignments which may be performed simultaneously? Traditional methods of 
computation are almost entirely serial, with the consequence that one cannot con- 
vert extra computing capacity into significantly greater speed. Thus far the only 
general method which has been proposed for achieving parallelism is the use of 
"'modular arithmetic"-that is, for some collection of relatively prime integers 
ml, ... mk one performs the calculations (mod mi) independently; the final result 
is then obtained by solving a system of simultaneous congruences. Such a procedure 
is possible provided that (i) the calculation consists entirely of additions and mul- 
tiplications of integers* (so that the corresponding calculations (mod mi) are jus- 
tified), and (ii) each number sought in the calculation is an integer known a priori 
to lie in an interval of length < m,m2 ... Mk . 

Modular arithmetic, when applicable, has the advantage of being free from round- 
off errors; moreover, addition and multiplication (mod m) are carry-free. Another 
feature is that in some types of calculation (for instance, tabulation of the values 
of a polynomial for equally spaced values of the argument) the calculation (mod m) 
is much simplified by the periodic repetition of the values being calculated. It there- 
fore seems of interest to show how computations of practical importance may be 
carried out within the limitations (i) and (ii) above. In this note we discuss division, 
linear equations, and the first boundary value problem from the standpoint of 
modular arithmetic. 

2. Division. Let us consider the problem of finding d binary digits of the quo- 

tient x where x and y are integers, 0 < x < y. The most natural approach is to 
y 

choose an n > 0, and let r be the least non-negative residue of 2n (mod y), then, 

writing N =2 , N is an integer easily computed (mod m) if (ni, y) = 1, and 

we have 
xN x 

2n = 
yX 

xr x 
.iteger xN, converted to binary these numbers differing by 2nl < -. Hence, the intgrx,cnere obnr 
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* Division is allowable only when the modulus is relatively prime to the denominator, and 
the quotient is an integer. 
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notation, gives d digits of the quotient x, providing 2n-1<d> x. Here the approxi- 
y 

mation is from below; by working instead with 

N' 2 + s s = y-r, 
y 

we get an approximation from above. The objection to this procedure is that cal- 
culation of the residues of N(mod mi) is simple only in case (mi , y) = 1, and so 
each denominator gives rise to a certain set of "forbidden" moduli. 

The following division algorithm is free from this defect. Let b = 2' be the 
smallest power of 2 not less than y. Then the sequence tn defined by 

btn+1 = (b -y) tn + X 

converges to - (for an arbitrary choice of to). Writing Sn = btn , we get 
y 

(1) Sn+-1 = (b - y)Sn + b x. 

If so is chosen to be an integer, all the Sn are integers, easily computed and periodic 
(mod m), for all m without exception. In place of (1), we can use the convergent 
iteration 

(2) 8 +i = -(y - a)Sn' + aGx 

where a is the greatest power of 2 not exceeding y. By choosing the better of (1), 
b -y -a . 

(2), i.e., (1) or (2) according as b or a is smaller (and at least one of these 

numbers is < 1) we achieve good convergence. The necessary a priori estimate of 
Sn (or Sn') respectively, and the degree of approximation after n iterations, are 
readily obtained, and from this the magnitude of M = llmi sufficient for calcula- 

tion ofX to the required accuracy is known. Since tnl arises from Sn upon division 
y 

by 2nk, i.e., shifting of a binary point, the conversion of Sn from modular to binary 

notation gives the initial digits of - directly. 
y 

A variation of this division algorithm which gives a simpler recurrence at the 
expense of an auxiliary calculation is this. Suppose that the (given) binary expan- 
sions of x, y are 

x ao2 + a,2'- 1+ *ap 

y =bo2q + b,2q-1 + ...bq 

where a , b1 are 0 or 1. We may suppose ap = bq = 1 since multiplication and divi- 
X 

sion by powers of 2 is trivial. Then - = 2P f( 2), where f denotes the function 
y2 

9~ ~ a, +ap- t + ao atp t2 (3) f(t) = 
bq+bq_lt+ -bo t 

I +c 2t + - 

It is easy to shov that, in the Taylor expansion (3), we have I c,1 l < nth Fibonacci 
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number, so that (3) converges at least* for t i < = .618 . Moreover, 

from (3), the integers cn, are readily computed in terms of the as, b, by a recurrence 
obtainied upon cross-multiplying in (3). 

But in terms of the cn the division can be carried out, using the scheme 

(4) Sn+l = 2 sn + C. l 

If so is an integer (say, so = 0) the Sn are integers and 

lim = ( = 

oiice again, the a priori bounds on sn, and the rate of convergence (which is uni- 
formly rapid with respect to all divisions) is readily obtained. 

These algorithms may be adapted, in an obvious way, to any radix. 

3. Linear Equations. Given the system of k equations (in vector notation) 

(1) Ax = b, A = || aij || 

where the aij and b, are assumed to be integers, the direct adaptation for modular 
arithmetic is to compute d = det A, and replace (1) by the system 

(2) Ay = db 

for the integer variables yi . Operating with moduli in, such that (d, mi) = I (as- 
suming, of course, d # 0) the solution of (2) (mod mi) is very simple (say, by 
Gaussian elimination). Crude a priori bounds on the yi may be obtained (e.g., by 
Hadamard's determinant inequality) when they are not available from physical 
or other considerations. However, there is againi the objection that this scheme 
allows "forbidden moduli" which vary with the given problem. Moreover, the 
solutions xi are found as quotients, necessitating divisionis which are non-trivial. 
These difficulties disappear when an iterative method is employed. Let us suppose, 
to keep the discussioii simple, that by preliminary transformations (1) has been 
put into a form where I ass I > Ej,i I a,j 1. Let ci be the integer defined by; (i) 
ci has the same sign as a,,; (ii) I Ci is the least power of 2 not less than i aii 1. Let 
C be the diagonal matrix of the ci, aiid c = max ci 1. Then the system (1) may 
be rewritten in the fornm 

(3) C.x = Dx + b 

(vritiing D = C -.4), and t-he iterative scheme 

(4) Cx +, = Dx, + b 

converges to the soltitioni of (1), because of the supposed diagoilal-dominance of 
A. Finally, puttinlg y,, = c"x, we get 

(5) ,-4L = (cCC)Dyn + (cC1)bc'. 

* The fact that the series (3) converges tit least in this circle, i.e., that the polyniomial in 

the denominiator cannot vanish in this circle, was discovered in another connection and p)ointe(l 
out to the author 1)w- D. J. Newiman. 
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Since cC'- has integer entries, all components of all y,, are integers (if yo is so chosen). 
The iterative scheme (5) is suitable for modular computation; we omit a detailed 
discussion of rate of convergence and a priori bounds. 

4. First Boundary-Value Problem. When the equation V'u = 0, subject to given 
boundary conditions, is solved numerically by the method of (square) lnets, it is 
customary to use an iterative method of solution which is known to coniverge at a 
rate that can be estimated in terms of the geometry of the region. This problem is 
in principle subsumed in the above discussion, but two factors make it especially 
simple from the standpoint of modular computation. First, the transformation to 
integer variables is particularly simple and especially favorable to a solution in 
binary notation (owing to the special significance of the number 4 in this iteration). 
Second, the maximum principle gives a good a priori bound on the solutions. For, 
writing the iterative scheme symbolically as 

Un+1 = Aun + b 

and setting 4'un = vn, we get 

(1) Vn+1 = 4Avn + 4n+'b. 

Suppose that the components of b are integers (i.e., that the given bounldary values 
are integers, which is achieved by shifting a binary point). If, then, the initial values 
vo = uo are chosen to be integers lying between the smallest and greatest boundary 
values, all components of the vn computed from (1) are integers, lying in the range 

4nB1 ? v ? 4nB2 

where B, and B2 are the min (and max) of the prescribed boundary values. 

5. Remarks on Other Iterative Methods. There are many other important itera- 
tive methods in numerical analysis, but not all of these seem well adapted to modu- 
lar computation, because in many cases transformation to integer variables leads 
to integers that are too large to be computed practically, i.e., an excessively great 
number of moduli are required. We may illustrate this with a simple example. 
Suppose we try to solve the equation 

x2 (1) X -8 = 

by means of the conivergent iteration 

Xn+1 = -Xn + 84 = 0. 

Letting 22 x = yn we have 

(2) Y +22n+13 
2 

YoO 
The numbers y1. defined by (2) are integers, whose iniitial binary digits coincide 
with those of the positive root of (1). Moreover, calculation (mod mn) of the num- 
bers yn from (2) is quite trivial. However, sinee yn is of the order of 22 , ev en 10 
iterations using moduli of the order of 50 would involve us (roughly) in calculating 
a 1000 binary digit number, by solving a system of 200 simultaneous congruelces- 
a lot of work to solve a quadratic equation. Newton's method would lead to the 
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same difficulties. A feasible method for solving quadratic equations by modular 
computation can, however, be based upon the Taylor expansion (1 - 4x) -1/2 

() 2nXn. 
E n= nX 

6. Concluding Remarks. Preliminary analysis indicates that parallel computa- 
tion, using modular arithmetic, is feasible for certain kinds of problems. The parallel 
computation envisioned here leads very swiftly to a solution encoded "in modular 
notation." By this is meant, a system of simultaneous congruences, whose solution 
(in a specified interval), written as a binary number, has as its initial digits the 
binary number which is the goal of the computation. For results of practical value 
it will probably be necessary, at the very least, to use moduli whose product exceeds 
1010. Hence the feasibility of rapid solution of large-scale systems of congruences 
will determine the timesaving possibilities of the method. Any a priori knowledge 
about the solution, such as might be obtainable from a preliminary rough solution, 
analog computation, etc., leads to a reduction in the number of necessary moduli, 
i.e., knowledge of r binary places reduces the product of the mi needed by a factor 
2'. Again, in such a case as the boundary value problem, where the values of the 
solution at neighboring net points differ by amounts which can be bounded a priori, 
this fact might lead to a considerable reduction of labor in the "conversion" phase 
of the problem. 
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Permutations with Restricted Position 

By Frank Harary 

In his book on combinatorial analysis, Riordan [4, p. 163-164] discusses permu- 
tations with restricted position and mentions an open question: 
"Any restrictions of position may be represented on a square, w-ith the elements 
to be permuted as column heads and the positions as row heads, by putting a 
cross at a row-column intersection to mark a restriction. For example, for per- 
mutations of four (distinct) elements, the arrays of restrictions for the rencontres 
and reduiced meliage problems mentionied above are 
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